TRAVAUX DIRIGÉS DE PHYSIQUE

Vendredi 03204/2010

Exercice N°1

On donne, pour les planètes du système solaire, les données suivantes :

Planète	Mercure	Vénus	Terre	Mars	Jupiter	Saturne	Uranus	Neptune	Pluton
Distance minimum au soleil (Millions de km)	45.90	107.40	147.00	206.70	740.90	1347	2735	4456	4425
Distance maximum au soleil (Millions de km)	69.70	109.00	152.00	249.10	815.70	1507	3004	4537	7375
Durée de l'année (années terrestres)	88 Jours	224.70 Jours	1	1.8	11.9	29.5	84	164.8	247.7

- 1. Déterminer l'excentricité de l'orbite terrestre. Avec quel degré d'approximation peut-on la confondre avec une orbite circulaire ?
- 2. Déterminer l'excentricité de l'orbite de Mercure, Vénus, Pluton quelle est la plus excentrique ?
- 3. Pour chacune des planètes, déterminer le rapport $\frac{a^3}{T^2}$ (a désigne le demi-grand axe de l'orbite elliptique; T la période de la planète).
- 4. La troisième loi de Képler est-elle vérifiée ?
- 5. En déduire une valeur approximative de la masse du soleil; on donne $G = 6.67 \cdot 10^{-11} \text{ S.I.}$

Exercice N°2

La lune suit une orbite approximativement circulaire, de rayon $r \approx 385000 \, km$ autour de la terre. Cette orbite est parcourue avec une période $T \approx 28 \, jours$.

- 1. Par un calcul direct faisant intervenir, notamment, le PFD en projection radiale, en déduire la relation entre T, r, la masse M de la terre, ainsi que G.
- 2. En déduire une valeur approximative de M.
- 3. Le rayon de la terre est $R \approx 6400 \, km$, en déduire une valeur approximative de la masse volumique moyenne de la terre, commenter le résultat.

PCSI – Lycée Jacques Amyot d'Auxerre – Année 2009-2010

4. Quelle est la vitesse de libération (de la terre) au niveau de l'orbite lunaire ? Comparer à la vitesse orbitale de la lune et commenter.

Exercice N°3

On considère l'interaction électrostatique entre une particule alpha (point matériel M de masse m et charge 2e) et un noyau (centre de force O supposé fixe, infiniment lourd, de charge Ze). À très grande distance, M a une vitesse de module v_{∞} et si il n'était pas dévié, il passerait à une distance b de O.

- 1. Dessiner la trajectoire prévisible de M, y faire figurer b (on supposera que b est non nul)
- 2. On redonne, dans le cas gravitationnel avec un centre de force de masse m', les formules de Binet : $-\left(\frac{L}{m}\right)^2 u^2 \left(\frac{d^2 u}{d \theta^2} + u\right) = a_r$; $E_c = \frac{1}{2} m \left(\frac{L}{m}\right)^2 \left(\left(\frac{d u}{d \theta}\right)^2 + u^2\right)$. L'désigne le moment cinétique, u l'inverse du rayon en coordonnées polaires.
 - 1. Montrer que $L=b m v_{\infty}$
 - 2. Donner l'équation de la trajectoire en coordonnées polaires
- 3. Trouver une relation entre b et la déviation de la particule (même signification que la déviation d'un rayon lumineux en optique).
- 4. On note r_{min} ; v_{min} les distance et vitesse lorsque M est au plus proche de O. Les déterminer, et commenter : comment varient-elles en fonction de b?

Exercice N°4

On considère le mouvement d'un point matériel M de masse m autour d'un centre de forces fixe, de masse $m' \gg m$. On suppose qu'il s'agit d'une trajectoire elliptique, parcourue sous l'influence de la force gravitationnelle.

- 1. Dessiner une telle trajectoire, indiquer la direction de $p \wedge L$ lorsque la distance est minimale (périgée) ou maximale (apogée).
- 2. Montrer que $p \wedge L$ a la même dimension que mr^2F (F désigne la force gravitationnelle)
- 3. Montrer que $A = p \wedge L + mr^2 F$ est une constante du mouvement; on le nomme « vecteur excentricité ».
- 4. Exprimer de deux façons $r \cdot A$, retrouver l'équation de la trajectoire.